
APEBOT
Motor Controller module

by Theo's Mechanic Ape
http://mechanicape.com

version 1.0
9 july 2011

Table of Contents
Motor controller..2

Hardware...2
Software API...2
Sourcecode..3
Schema..10

http://mechanicape.com/

Motor controller

The motor controller is responsible for the following actions:

1. Turn the motors on/off

2. Turn the motors forward/backward

Hardware

The controller has the following external connections
1. +12V power (for the motors)
2. +5V power (for the communication)
3. GND - Ground (motors+communication)
4. TX - Send data (for sending serial data to host)
5. RX - Receive data (for receiving serial data from host)
6. CTS - Clear to send (unused)

Software API

The motordriver is communicating at 19200 baud. It accepts a command that is beginning with the
character 'M' and followed by a commandbyte. The following commands are possible:

• “M” + char(1) idle
• “M” + char(2) forward
• “M” + char(3) backward
• “M” + char(4) rotate clockwise
• “M” + char(5) rotate counter clockwise

The driver does not return information at this time. In the near future it will return 2 bytes indicating
the actual left motor and right motor movement measured by a pulsedetector on the left and right axles.

Sourcecode

const int COMMAND_NONE=0;

const int COMMAND_IDLE=1;

const int COMMAND_MOVE_FW=2;

const int COMMAND_MOVE_BW=3;

const int COMMAND_TURN_CW=4;

const int COMMAND_TURN_CCW=5;

const int pinMotorLeftDirection=13;

const int pinMotorLeftPWM=3;

const int pinMotorRightDirection=12;

const int pinMotorRightPWM=11;

const boolean bMotorLeftForward=HIGH;

const boolean bMotorLeftBackward=LOW;

const boolean bMotorRightForward=LOW;

const boolean bMotorRightBackward=HIGH;

int receiveTimeout=0;

void setup()

{

 delay(3000);

 Serial.begin(19200);

 pinMode(pinMotorLeftDirection,OUTPUT);

 pinMode(pinMotorRightDirection,OUTPUT);

 pinMode(pinMotorLeftPWM,OUTPUT);

 pinMode(pinMotorRightPWM,OUTPUT);

 runCommand(COMMAND_IDLE);

}

void loop()

{

 int command=getSerialCommand();

 runCommand(command);

 delay(5);

}

int getSerialCommand()

{

 int validatedCommand=COMMAND_NONE;

 if (Serial.available()>0)

 {

 receiveTimeout=0;

 int userCommand=Serial.read();

 Serial.flush();

 //Serial.println(char(48+userCommand));

 switch(userCommand)

 {

 case COMMAND_IDLE: validatedCommand=COMMAND_IDLE; break;

 case COMMAND_MOVE_FW: validatedCommand=COMMAND_MOVE_FW; break;

 case COMMAND_MOVE_BW: validatedCommand=COMMAND_MOVE_BW; break;

 case COMMAND_TURN_CW: validatedCommand=COMMAND_TURN_CW; break;

 case COMMAND_TURN_CCW: validatedCommand=COMMAND_TURN_CCW; break;

 case COMMAND_NONE: validatedCommand=COMMAND_NONE; break;

 default: validatedCommand=COMMAND_IDLE; break;

 }

 }

 else

 {

 receiveTimeout++;

 }

 return validatedCommand;

}

void runCommand(int command)

{

 switch(command)

 {

 case COMMAND_IDLE: doIdle();break;

 case COMMAND_MOVE_FW: doForward(); break;

 case COMMAND_MOVE_BW: doBackward(); break;

 case COMMAND_TURN_CW: doTurnCW(); break;

 case COMMAND_TURN_CCW: doTurnCCW(); break;

 case COMMAND_NONE: doIdle(); break;

 }

}

void doIdle()

{

 doStop();

}

void doForward()

{

 setMotorLeft(bMotorLeftForward,255);

 setMotorRight(bMotorRightForward,255);

}

void doBackward()

{

 setMotorLeft(bMotorLeftBackward,255);

 setMotorRight(bMotorRightBackward,255);

}

void doTurnCW()

{

 setMotorLeft(bMotorLeftForward,255);

 setMotorRight(bMotorRightBackward,255);

}

void doTurnCCW()

{

 setMotorLeft(bMotorLeftBackward,255);

 setMotorRight(bMotorRightForward,255);

}

void doStop()

{

 setMotorLeft(bMotorLeftForward,0);

 setMotorRight(bMotorRightForward,0);

}

void setMotorLeft(boolean dir,int power)

{

 digitalWrite(pinMotorLeftDirection,dir);

 digitalWrite(pinMotorLeftPWM,power);

}

void setMotorRight(boolean dir,int power)

{

 digitalWrite(pinMotorRightDirection,dir);

 digitalWrite(pinMotorRightPWM,power);

}

Schema

Sparkfun ArduMoto

Sparkfun Arduino Pro

MFA/KOMO DC transmissionmotors

	Motor controller
	Hardware
	Software API
	Sourcecode
	Schema

